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Random Number Generation Using Normal Numbers

Introduction

Normal Numbers

Normal Numbers: Types of Numbers

I Rational numbers - p
q where p and q are integers

I Irrational numbers - not rational
I b-dense numbers - α is b-dense ⇐⇒ in its base-b expansion

every possible finite string of consecutive digits appears
I If α is b-dense then α is also irrational; it cannot have a

repeating/terminating base-b digit expansion
I Normal number - α is b-normal ⇐⇒ in its base-b expansion

every string of k base-b digits appears with a limiting frequency
1/bk

I A real number, α, having a different base-b expansion for each
integer b > 2, may be normal in one base but not in another

I A normal number in base r is normal in base s if log r/ log s is a
rational number
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Introduction

Normal Numbers

Normal Numbers: More Facts

I Every b-normal sequence is b-dense
I A number that is b-normal for every b = 2,3,4, . . . is said to be

absolutely normal
I Almost all real numbers in [0, 1) are absolutely normal, and they

are dense in [0,1)
I The non-normal numbers in [0,1) are also uncountable
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Introduction

Examples of Normal Numbers

Special Normal Numbers

Some examples of numbers that are provably normal
1. Champernowne numbers

I C2 = 0.(1)(10)(11)(100)(101)(110)(111)(1000) . . .
I C10 = 0.(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12) . . .
I Thus, Cb is b-normal by construction

2. Copeland-Erdös constants
I Concatenate the primes in base 10:

0.(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43) . . .
I Concatenate the primes in base b:

0.((p1)b)((p2)b)((p3)b)((p4)b)((p4)b)((p5)b) . . .
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Introduction

Examples of Normal Numbers

Special Normal Numbers

3. Stoneham numbers:

αb,c =
∑

n=ck>1

1
bnn

=
∞∑

k=1

1
bck ck

I αb,c is b-normal when c is an odd prime, and b and c are relatively
prime

4. Korobov numbers:

βb,c,d =
∑

n=c,cd ,cd2 ,cd3 ,...

1
nbn

I βb,c,d is b-normal when b, c, d > 1 and b and c are relatively prime
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Introduction

Properties

Equidistribution
I Let {xi} be an infinite sequence of numbers in [0,1); E ⊂ [0,1), a

subset, and #(E ;N) the number of {xi}, 1 ≤ i ≤ N ∈ E , then
{xi} is uniformly distributed modulo 1 (UDM1) if:

lim
N→∞

#([a,b);N)

N
= b − a, ∀a,b ∈ R, 0 ≤ a < b ≤ 1

I {xi} is UDM1 if ∀ Riemann integrable function f on [0,1):

lim
N→∞

1
N

N∑
i=1

f (xi) =

∫ 1

0
f (x)dx

I Bohl, Sierpinksi, Weyl theorem: If α is irrational, then ∀ Riemann
integrable function f on [0,1) we have:

lim
N→∞

1
N

N∑
i=1

f ({iα}) =
∫ 1

0
f (x)dx

I Thus xi = {iα} = iα− biαc is UDM1 when α is irrational
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Properties

Equidistribution

I Equivalently the Weyl criterion can be applied empirically: {xi} is
UDM1 ⇐⇒ for every integer h 6= 0

lim
N→∞

1
N

N∑
i=1

e2πihxi = 0

Note: if {xi} are random then
∑N

i=1 e2πihxi ≈ O(
√

N)

I Discrepancy - the number of points in the sequence falling into
an arbitrary set B is close to proportional to the measure of B

I There exists an absolute constant C such that for any positive
integer m the discrepancy of any sequence {xi} satisfies

DN < C

(
1
m

m∑
h=0

1
h

∣∣∣∣∣ 1
N

N−1∑
i=0

e2πihxi

∣∣∣∣∣
)
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Equidistribution

I Let {xi} be an infinite sequence of vectors in [0,1)k ; E ⊂ [0,1)k ,
a subset, and #(E ;N) the number of {xi}, 1 ≤ i ≤ N ∈ E , then
{xi} is UDM1 in Rk if:

lim
N→∞

#([a,b);N)

N
=

k∏
i=1

(bi − ai), ∀[a,b) ∈ Rk

I if 1, α1, . . . αk are linearly independent over the rationals, then
xi = ({iα1}, . . . , {iαk}) is UDM1 in Rk

I {xi} ∈ R is k -distributed modulo 1 if
xi = (xi , xi+1, . . . xi+k−1) ∈ Rk is UDM1 in Rk

I {xi} ∈ R is∞-distributed modulo 1 if it is UDM1 in Rk , ∀k > 0
I If α is absolutely normal, then its digits can be used to

approximate an∞-distributed sequence modulo 1
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Relationship with standard pseudorandom number generators

Normal Numbers and Random Number Recursions

Normal Numbers and Recursive Sequences

I Associate a real number of the form
I β =

∑∞
i=1

rn
bn , where limn→∞ rn = 0

I having a PRNG sequence starting at x0 = 0
I xn = {bxn−1 + rn}
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I Linear Congruential Generator (LCG) with prime additive
constant

I xn = a xn−1 + p (mod M)
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I a is the multiplier
I M for this generator is 264
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Normal from Sequence

I Consider a recurrence in the form:

xn = {2xn−1 + rn},where rn =

{
1
n , if n = 3k

0, otherwise

I Thus we have β = α2,3 in this case
I This leads to a recurrence formula

zn = 2zn−1 (mod 3j)

I Using a binary expansion of a normal sequence means we can
then just shift bits.
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Normal from recursive sequence

Getting a Generator from a Stoneham Number

I Recall that α2,3 =
∑

k≥0
1

23k 3k

I The digits starting at bit 23m
is x3m = {23m

α2,3} which can be
rewritten as

x3m = {
m∑

k=1

23m−3k

3k }+
∞∑

k=m+1

23m−3k

3k

I The second summation is extremely small even when m is not
large, call it εm, thus

x3m =
(3m−123m−3 + 3m−223m−32

+ . . .+ 3× 23m−3m−1
+ 1) (mod 3m)

3m

+εm
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Normal from recursive sequence

Getting a Generator from a Stoneham Number

I 23m−3m−1 ≡ 1 (mod 3m), and similarly for the other terms (proof
on the next slide), and so

(3m−1 + 3m−2 + . . .+ 3 + 1) (mod 3m)

3m + εm

=
3m − 1
2× 3m + εm =

b3m/2c
3m + εm

I And finally we have

xn =
(2n−3mb3m/2c) (mod 3m)

3m + ε

I If we choose m = 33 then we derive the start of a sequence
where 52 bits can be generated at a time using double precision
arithmetic, 333 ≈ 252
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Proof of 3m−k ∗ 23m−3k
= 3m−k (mod 3m)

I Proof of the main result:

3m−k ∗ 23m−3k
= 3m−k (mod 3m) for 1 ≤ k ≤ m

1. By Euler’s generalization of little Fermat, 22∗3k−1
= 1 (mod 3k ) for

any k ≥ 1, note that
φ(3k ) = 3k ∗ (1− 1/3) = 3k−1 ∗ (3− 1) = 2 ∗ 3k−1

2. And so for some integer M depending only on k and m, 1 ≤ k ≤ m
we have

22∗3k−1∗3∗(3m−k−1)/2 − 1 = 3k ∗M
3. It follows that

22∗3k−1∗3∗(3m−k−1)/2 − 1 = 23k−1∗(3m−k+1−3) − 1 =

23m−3k
− 1 = 3k ∗M for 1 ≤ k ≤ m

4. Multiply both sides of this last equation by 3m−k to get

3m−k ∗ 23m−3k
= 3m−k (mod 3m)�
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Mathematical Model: Specific Constants

I Specific generator form of a Normal Constant

α2,3 =
∑
k>1

1
3k 23k

I This sum produces numbers of the form
= 0.0418836808315029850712528986245716824260967584654857 ... 10
= 0.0AB8E38F684BDA12F684BF35BA781948B0FCD6E9E06522C3F35B ... 16
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Seed Generation

Initialization
I Select a starting index a in the range

333+100 = 5559060566555623 ≤ a ≤ 253 = 9007199254740992

I ’a’ can be thought of as the ’seed’ of the generator
I Calculate the first value

z0 = (2a−333
· b333/2c) (mod 333)

I To return in the unit interval, multiply by 3−33

Generate Iterates
I The next values can be calculated by the recursion

zk = (253 · zk−1) (mod 333)
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Calculation Code Initial

// define some constants
p3i = pow(3.0, 33.0);
r3i = 1.0 / p3i;
t53 = pow(2.0, 53.0);

// Calculate starting element.
d2 = expm2 (aa - p3i, p3i);
d3 = aint (0.50 * p3i);
ddmuldd (d2, d3, dd1);
d1 = aint (r3i * dd1[0]);
ddmuldd (d1, p3i, dd2);
ddsub (dd1, dd2, dd3);
d1 = dd3[0];
if(d1 < 0.0)

d1 = d1 + p3i;
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Calculation Code Iteration

dd1[0] = t53 * d1;
dd1[1] = 0.0;
d2 = aint (t53 * d1 / p3i);
ddmuldd (p3i, d2, dd2);
ddsub (dd1, dd2, dd3);
d1 = dd3[0];
if (d1 < 0.0)

d1 = d1 + p3i;
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Implementation and Results

TestU01 Results
SmallCrush
==========================================
Version: TestU01 1.2.1
seed = 5559060566555623

========= Summary results of SmallCrush =========

Version: TestU01 1.2.1
Generator: ubcn_CreateBCNf
Number of statistics: 15
Total CPU time: 00:01:01.67
The following tests gave p-values outside [0.001, 0.9990]:
(eps means a value < 1.0e-300):
(eps1 means a value < 1.0e-15):

Test p-value
==========================================
1 BirthdaySpacings eps
==========================================
All other tests were passed

Table: TestU01 Results - SmallCrush
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Implementation and Results

Class Definition

I class BCN : public Sprng
I #define NPARAMS 1 /*** number of valid parameters ***/
Sprng * SelectType(int typenum)
{

switch (typenum)
case 0: return new LFG;
case 1: return new LCG;
case 2: return new LCG64;
case 3: return new CMRG;
case 4: return new MLFG;
case 5: return new PMLCG;
case 6: return new BCN;
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Implementation and Results

Initialization Routine

I Calculate constants

BCN::BCN() /* default constructor */
{
p3i = long long(pow(3.0, 33.0)); // $3^{33}$
r3i = 1.0 / p3i; // $\frac{1}{3^{33}}$
t53 = long long(pow(2.0, 53.0)); // $2^{53}$

I Calculate Initial Value

int BCN::init_rng(int gn, int tg, int seed, int p)
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Implementation and Results

Iterations

I Single function to get next random number
I Different versions to return different types
int get_rn_int (); /* returns integer */
long long get_rn_int64 (); /* returns integer */
float get_rn_flt (); /* returns float */
double get_rn_dbl (); /* returns double */
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Implementation and Results

SPRNG Timing Results

Type Integer Float Double
lcg 125.0156 MRS 125.0156 MRS 142.8776 MRS
lfg 66.6756 MRS 62.5117 MRS 52.6399 MRS
mlfg 166.6944 MRS 100.0100 MRS 142.8776 MRS
lcg64 142.8776 MRS 62.5078 MRS 71.4388 MRS
cmrg 111.1235 MRS 47.6259 MRS 58.8339 MRS
bcn 23.2591 MRS 22.2257 MRS 22.7309 MRS

Table: Timing C++ interface: (Note: MRS = Million Random Numbers Per
Second)
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I Monte Carlo autocorrelation
I Typical good generator autocorrelation time
I Normal Number generator autocorrelation time
I Bad LCG generator autocorrelation time
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